由于碳纤维表面惰性,纳米汽车碳纤维复合材料中碳纤维和基体材料间应力载荷无法有效传递,直接影响其性能发挥,限制其规模化应用,所以要对碳纤维进行表面处理。通过表面改性技术来提高碳纤维的表面活性,强化碳纤维与基体材料之间的界面性能,改善了其与基体的粘结效果,从而提高纤维材料在工业应用中的价值。碳纤维改性技术的关键在于提高碳纤维与基体的结合程度,提高复合材料的性能。汽车碳纤维定制通过表面改性技术来提高碳纤维的表面活性,强化碳纤维与基体材料之间的界面性能,改善了其与基体的粘结效果,从而提高纤维材料在工业应用中的价值。
实际上,宁波汽车碳纤维看似不起眼的碳纤维,在新材料界是一匹“黑马”,应用领域极为广泛,其首个市场化应用是1972年市售的碳纤维增强树脂钓鱼竿。此后,碳纤维应用快速向高端化的工业制造及尖端科技领域发展。其中,小丝束碳纤维主要应用于国防军工、航空航天、卫星导弹以及休闲体育用品领域,而大丝束碳纤维主要应用于工业及民用领域等。由于其材料本性、产业技术复杂性、应用领域重要性和市场规模性等因素影响,汽车碳纤维定制碳纤维被称为“黑色黄金”或“材料之王”。
宁波汽车碳纤维常见的就是碳纤维与树脂融合构成复合材料,而碳纤维在复合材料中起到的是承载的作用,外界作用在碳纤维复合材料上的力会通过基体材料传递给碳纤维,而破坏碳纤维复合材料首先就是要使碳纤维受到损害,汽车碳纤维定制对于碳纤维的破坏主要有两种,平行于碳纤维方向的拉伸力和垂直于碳纤维方向的力,这两种破坏决定着碳纤维要具备较高的拉伸强度和抗剪切强度才不至于受到损害。有了这个概念,在进行碳纤维制品的设计过程中,尽可能了解制品的受力情况,对纤维排列方向进行优化,从而发挥出最大的性能优势。
目前碳纤维复合材料的应用已从航天航空逐步拓展到人类社会的各个领域。宁波汽车碳纤维适应市场需求,实施自主创新,对标式技术与产品研发向自主品牌创新过渡,围绕具有发展前景的大市场研发专用碳纤维技术,充分改良碳纤维的不足,提升碳纤维材料的性价比,提高复合材料的综合性能等,纳米汽车碳纤维是国产碳纤维技术发展未来需要重点关注的问题。但是阻碍高端碳纤维复合材料发展的障碍是,目前其由于技术含量高、生产工艺极其复杂等原因,造成使用成本也水涨船高。